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Abstract—As the enabling technology, virtualization plays an
important role in cloud computing by providing the capability
of running multiple operating systems and applications on top
of the same underlying hardware. Early detection of vulner-
ability in virtualization is vital for virtualization performance
and to protect against attacks that may lead to information
leak or virtual machine(VM) escape. While current bug finding
tools can detect common flaws in software implementation,
many of the virtualization vulnerabilities are unique to cloud
platform and can hardly be addressed by existing techniques.
The discovery of these vulnerabilities often requires specific
domain knowledge and a significant amount of manual effort.

In this paper, we conducted analyses of known vulnerabilities
disclosed in recent years in different virtualization platforms,
studied the differences between vulnerabilities in virtualization
and traditional software vulnerabilities and categorized them
into different groups. Based on the analyses, we propose to
detect these vulnerabilities by extending symbolic execution
techniques and designed a detection framework for virtu-
alization platforms which can detect bugs in virtualization
implementations.
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I. INTRODUCTION

Cloud computing is a fast growing computing technology

and has been adopted as one of the key elements in modern

IT infrastructure. With cloud computing, users have the

ability to request computing resources on demand and on

the fly without physically possessing the hardware [1].

Being the core technology in cloud computing, virtualization

enables the dynamic allocation and modification of multiple

VMs with one physical host machine underneath or the

migration of one VM between different hosts.

The implementation of the virtualization is called hypervi-

sor or virtual machine monitor(VMM). As a software layer

that lies in between the VMs and the physical hardware,

VMM manages the resource allocation and deceives the

guest operating system by providing virtual hardware de-

vices. A VMM usually consists of hundreds of thousands

of lines of code [2]. In recent years, more security vul-

nerabilities in cloud platforms have been discovered and

documented. These vulnerabilities in the virtualization layer

often lead to performance degradation, service interruption,

information leaks and even control flow hijacking at the

VMM level.

While many such vulnerabilities can be detected by

existing software analysis techniques [3] , some flaws as

witnessed in the past years are related to particular charac-

teristics of the virtualization layer such as hardware logic and

VM state migration requirements. Existing code verification

techniques cannot easily be applied to capture these flaws

specific to virtualization. Because of this, some of them may

have been living in the code for years before they can be

found and fixed. In this paper, we argue that the detection

of these virtualization specific flaws often requires specific

domain knowledge integrated in the detection process.

The goal of our work is to analyze the characteristics

of security vulnerabilities and develop a systematic ap-

proach to detect them accurately. We studied virtualiza-

tion security vulnerabilities in different VMMs that are

documented by Xen Security Advisory(XSA) , Common

Vulnerabilities and Exposures(CVE) , and National Vul-

nerability Database(NVD). Then we distinguish the unique

characteristics of vulnerabilities in VMMs from traditional

vulnerabilities. Based on the observation of these docu-

mented vulnerabilities, we proposed the idea of extending

existing dynamic software analysis techniques, i.e. symbolic

execution [4] to detect virtualization security vulnerabilities.

We also implemented the prototype based on QEMU, a

popular open source VMM, to apply the new detection

methods.

Correspondingly, our contributions in this paper are:

• We identified several types of virtualization specific

flaws based on the recently discovered vulnerabilities

in virtualization platforms.

• We proposed approaches to detect three types of virtu-

alization specific vulnerabilities.

• We designed a framework to implement these methods

to detect virtualization specific flaws.

II. VIRTUALIZATION VULNERABILITIES

In a virtualized environment, each of the VMs is isolated

from the rest of the system by the VMM. A successful ex-

ploit can break this isolation and thus lead to various issues

regarding the confidentiality, integrity, or availability of the

VMs. The number of virtualization security vulnerabilities

disclosed is increasing year by year and more researchers

are focusing on this field. In Pwn2Own 2016, an additional

bounty of $75K will be rewarded to contestants who are able

to escape a Microsoft Windows guest operating system(OS)

running in a VM created by VMware Workstation [5].
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Out of the 4 dominant VMMs in the market (Microsoft

Hyper-V [6], VMware [7], Xen [8] and Kernel-based Virtual

Machine(KVM) [9]) [10] , our study focused primarily on

Xen and KVM because Microsoft Hyper-V and VMW are

closed-source commercial software, which makes it hard to

interpret the internal logic of the VMMs and analyze their

vulnerabilities.

The vulnerabilities we studied are collected from NVD’s

CVE database and Xen XSA database. Our initial search

criteria covers all the vulnerabilities related to KVM and

Xen from the very beginning through December 2015, which

gives us 96 matches for KVM and 215 matches for Xen. In

addition to that, Xen XSA gives us 6 vulnerabilities that are

not documented in the CVE database. Including three CVEs

that are shared by both VMMs, there are 314 vulnerability

reports in total.

In order to better understand the characteristics of the

vulnerabilities and build the detection framework, we cat-

egorized the vulnerabilities into three groups: Virtual Hard-
ware Logic Errors, Device State Management Errors and

Resource Availability Errors. The definition of these three

categories will be discussed in detail in Section III.

Table I
VULNERABILITIES FOUND IN 2015

KVM Xen

Virtual Hardware Logic Errors 5 20

Device State Management Errors 1 11

Resource Availability Errors 4 15

We analyzed all of the vulnerabilities disclosed in 2015

and the statistical results are shown in Table I. During the

study, we noticed that while some of the vulnerabilities exist

in traditional computing environments and can be located

by existing techniques, many others have specific properties

related to virtualized systems, such as software emulated

hardware logic and an adversary’s ability to control the

execution flow of some virtual hardware that cannot easily

be addressed.

III. DETECTING VIRTUALIZATION SPECIFIC

VULNERABILITIES

Our analysis in Section III showed that other than

traditional software vulnerabilities, there are virtualization

specific flaws that can not be addressed by conventional

software verification techniques. Many of the times these

flaws are caused by logical errors of device emulations.

These logical errors are not the conventional software vul-

nerabilities that usually lead to hijacking of execution flow.

Also, cloud users usually by default have full control over

the guest OS and can interact with the underlying virtual

hardware directly, which is another special characteristic that

makes VM implementations more vulnerable than regular

systems. By considering the unique aspects of virtualization,

we categorize three types of VM implementation flaws based

on VM specific properties.

A. Virtual Hardware Logical Errors
1) Type of Problem: Virtual hardware implementation is

designed to closely mimic physical hardware devices. When

virtual hardware implementation behaves exactly the same

as its physical counterpart, the OS on top of the VMM

executes as if it runs on a physical machine. However, virtual

hardware implementation tends to behave differently than

physical hardware. Sometimes the differences are introduced

intentionally as workarounds for technical difficulties of the

implementations and sometimes they are just flaws in the

design or development.

While the differences do no harm in most cases, some

create vulnerabilities that can be exploited by adversaries to

attack the VMM. For example, CVE-2014-9718 indicates

that due to the inconsistency in interpreting a function’s

return value, a guest OS user is able to cause a host OS

Denial of Service(DoS) via crafted code.

Flaws in the implementation of the virtual hardware and

differences in behavior are not necessarily software bugs

that can be verified by conventional software verification

techniques. For example, in CVE-2015-8567, the VMWARE

VMXNET3 paravirtual NIC emulator failed to check if the

device is active before activating it. This results in the

possibility of launching a DoS attack by calling the device

activation repeatedly and thus exhaust the host’s resources.

2) Proposed Solution: The solution to detecting these

types of errors is to find the differences in behavior between

physical hardware and its virtual implementation. For a

specific virtual hardware implementation, the detection of

thees differences requires a reference that defines the correct

behavior of the corresponding physical hardware. This ref-

erence can be either the formal specification/datasheet of the

physical hardware or the physical hardware itself. In some

cases, the reference can be a hardware model provided by

the vendor or a third party.

Even with a reference, the detection of these differences

in behavior is non-trivial. The challenge is similar to those in

equivalence testing between different versions of software,

except that one side of the comparison may not be software.

To overcome this challenge, we propose to approximate

equivalence testing by enumerating the execution of vir-

tual hardware implementation, followed by comparing the

execution outcome between virtual and physical hardware.

Even with this approach, there are difficulties such as how

to control the environment so that the virtual and physical

hardware are being compared under the same situation.

Our initial effort relies on the ability of observing the

behavior of the virtual hardware and tracing the execution

path. In virtual hardware implementation, the enumeration

of software execution can be addressed by the dynamic
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symbolic execution technique. We have extended QEMU’s

unit test framework to achieve the capability of exercising

individual virtual devices with a relatively small footprint of

a running virtual machine.

B. Device State Management Errors
1) Type of Problem: The second type of virtualization

specific problem is related to VMM device state manage-

ment. The value of the device registers captures the status

of the virtual hardware, and thus these device states are

important for managing the proper execution of the virtual

hardware. Also, the VMM needs to manage and monitor

the device state for each virtual hardware device for specific

VM functions such as snapshot and VM live migration.
Incorrect handling of the device states, such as failing

to save or restore some register values during VMM pause

and resume actions, usually lead to misbehaviors in the OS

level and possibly crashes of VMs. For example, according

to CVE-2012-5634, while using VT-d hardware, an error

occurred when registering a interrupt handling register of a

device that is behind a legacy PCI bridge could result in

denial of service attack that affecting VMM.
Device state management is vital during live migration of

virtual machines in the cloud environment. Missing device

states that governs the virtual hardware’s behavior after live

migration will potentially result in unexpected behaviors of

the virtual hardware. This type of problem can be illustrated

by considering the registers that represents the transmission

queue (rxbuf size) status of a network device. If this device

state is not transferred during the live migration, the device

will not respond to any network packets or I/O requests

before a reset request is sent to the device.
2) Proposed Solution: In order to detect device state

management problems, such as the failure of initializing

or restoring device register values, we need to ensure that

the VMM implementation captures all of the variables that

define the device states.
Although hardware behaviors are defined by design speci-

fications, manual efforts to locate these variables from virtual

hardware implementation are tedious and error-prone.
We propose to apply software analysis techniques to

automatically detect all variables in a virtual hardware

implementation at each critical execution points during the

running time of virtual hardware. This effort can help detect

VMM device state management errors. This approach still

faces the challenge of how to get a complete set of variables

that capture the behavior of virtual hardware implementa-

tion. Although we cannot ensure a full capture of all device

states, these techniques have been shown to be useful in our

previous work of detecting some VMM device management

bugs [11].

C. Errors Related to Resource Availability
1) Type of Problems: The third type of VMM specific

error is related to resource availability. Physical hardware

Figure 1. Architecture of the detection framework

(such as a sensor) by nature typically executes in an infinite

loop once it is initialized. The hardware silicon continuously

polls the environment and signal the software (e.g. through

interrupts). If the corresponding virtual hardware implemen-

tation faithfully implements this hardware specification, the

virtual implementation would run in an infinite loop, feeding

data to software through registers or interrupts. However,

the VMM is not based on silicon and a software device

implementation has to consider the resource usage and avoid

busy looping when necessary.

Unfortunately, the guest OS running on top of the VMM

makes no effort to differentiate between virtual and physical

hardware. Mistakes in VMM device implementation com-

bined with guest OS behaviors can lead to high resource

usage. Although resource usage problems occur in almost

all types of software, VMMs are especially prone to this

type of errors due to the lack of physical isolation.

For example, CVE-2015-5279 showed that be exploiting a

buffer overflow vulnerability in the ne2000 NIC, an attacker

is able to cause a denial of service (by creating an infinite

loop) or possibly execute arbitrary code via vectors related

to receiving packets.

2) Proposed solution: To detect errors related to resource

usage in VMM implementation, we would need to include

resource usage measures in program analysis techniques. We

are in the process of applying a previous software analysis

solution [12] with a focus on resource usage to VMM

implementation. Our goals are to be able to 1). accurately

detect situations that might lead to resource availability

vulnerabilities such as infinite loops in virtual hardware or

repetition of memory allocation during the normal execution

of virtual hardware and 2). craft arbitrary input values for

virtual hardware that can lead us to the location of execution

of our interest.

IV. DESIGN

With all of the key challenges to detecting virtualization

vulnerabilities as discussed previously in mind, we designed

a framework that is able to detect virtualization specific
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vulnerabilities by extending symbolic execution techniques

and QEMU’s unit test tool, namely QTest.

A. Architecture
As shown in Fig. 1, the framework consists of two major

components: a modified version of QEMU that launched in

QTest Accl Mode and LibQOS that is responsible for han-

dling the test cases of the virtual hardware. These two parts

operate in a client-server based fashion and communicate

with each other via sockets. QEMU, when running in QTest

Accl Mode, is able to initialize only the device to be test

and several other crucial components in order for the device

to be able to execute properly. LibQOS provides API for

steering the execution of QEMU under test by adding basic

operations such as clock cycle and IRQ.

The execution of the test is guided by the symbolic

execution engine, which runs inside the host OS. Symbolic

variables can be defined via symbolic execution module
inside a unit test, passed to QEMU by LibQOS, then

interpreted and assigned to corresponding device states by

QTest SE Driver. Symbolic execution engine will log the

execution trace and generate test output representing the

execution paths of the virtual hardware during the test.

B. Modified QTest Framework
We extended QTest’s capability of testing the functions of

individual virtual hardware to the detection of virtualization

specific vulnerabilities in a particular virtual hardware imple-

mentation by adding symbolic execution module. Because

QTest is maintained in QEMU’s codebase, it would be

convenient for virtual device developers to conduct not

only functional testing but also security testing that helps

eliminate implementation flaws that can lead to virtualization

vulnerabilities.

With the framework, it is possible to:

1) Conduct testing of virtual hardware for vulnerabilities

without having to modify the source code to mark a

particular device state of interest, which is required by

traditional symbolic software testing techniques. The

symbolic value of the device state is passed into the

running instance of the VM by LibQOS through IPC.

2) Test only the hardware of interest without having

the whole VM up and running. With QTest Accl

Mode enabled, QEMU will only initialize the virtual

hardware to be tested together with all the components

that are required for the virtual hardware to be running

properly.

One other advantage of using QTest framework when

testing individual QEMU device is that as a result of the

hierarchical model of QEMU hardware implementation,

there are lots of references to the parent device objects

regarding the device implementations, thus the initialization

and proper execution of one particular device requires a

recursive initialization of all the ancestors and depending

components. This will become overwhelmingly difficult to

deal with manually when the device implementation gets

complicated.

As a prototype implementation, we integrated our pre-

vious work of extracting key device states for the live

migration of virtual machines in cloud computing [11] and

are able to check for device state vulnerabilities in virtual

hardware implementations.

V. EVALUATION

We evaluated the effectiveness of our approach with

regard to detecting logic errors and device state management

errors by reproducing with our system several of the CVEs

that are discovered and reported manually. We measured the

code coverage and the efficiency of the execution of the

virtual devices during the experiments and compared them

to the testing results of the real hardware.

Since the symbolic execution is a time-consuming pro-

cess, sometimes the execution can get stuck in one code

chunk for hours, we defined a heuristic that if there is no new

coverage generated within a given time, the engine will force

terminate the current input iteration, mark it as suspicious

and switch to the next one. The reason of marking the input

as suspicious is that the input might have caused an infinite

loop and thus needs further investigation.

A. Analyzing the behavior of the virtual devices
Even though most of the emulated devices in a virtual

machine are based on the specifications of real hardware,

they tend to behave differently than their physical counter-

part. While some of the differences are there as workarounds

for technical difficulties of the implementations, sometimes

they are just mistakes made by the developer in the process

of the design or development. When such difference creates

vulnerabilities that can be exploited by adversaries to attack

the VMM, we call it a logical error in the virtual hardware

implementation.

In order to be able to compare the execution difference

between virtual devices and real hardware as well as the

behavior difference between different runs of tests, we

implemented SE-Diff. SE-Diff is a set of script wrappers that

can be used to automatically conduct symbolic execution

testing on a given piece of annotated source code and

generate the results of the behavior differences and other

execution information such as code coverage and execution

time. With the scripts, we are able to achieve:

1) Given two annotated c files as input, output the differ-

ences between the generated symbolic execution test

cases. This is useful when comparing between two

different runs of the same test with different seeds

given or comparing between two sets of tests in which

slight differences are introduced.

2) When a specific input and device state is given,

analyze the differences between the virtual device and
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the real hardware by comparing the output of the

devices and the state change.

B. Detecting Virtual Hardware Logical Errors
In Section III we discussed three types if virtual machine

implementation flaws based on VM specific properties, and

most of the vulnerabilities fell into these categories are

triggered by improper I/O or memory manipulation. Since

we are able to control clock, memory, I/O, IRQ with QTest

API, theoretically we are able to get full control of the virtual

device under test and trigger the vulnerabilities with our test

platform. To prove the effectiveness of our proposed device

vulnerability detection technique, we conducted experiments

that automatically reproduce CVE-2015-7504 and CVE-

2015-5278.

The vulnerability of CVE-2015-7504 lies in QEMU’s

AMD PC-Net II Ethernet Controller emulation implemen-

tation. There is a location vulnerable to heap-based buffer

overflow in the pcnet transmit function in hw/net/pcnet.c.

Adversaries can exploit this vulnerability to cause a denial

of service attack to crash the QEMU instance or take control

of the execution of the QEMU host and achieve arbitrary

code execution with privileges of the QEMU process.

CVE-2015-5279 is a flaw in QEMU’s NE2000 NIC,

when a packet received from the network satisfies certain

condition, the ne2000 receive function in hw/net/ne2000.c
will enter an infinite loop and thus resulting in a denial of

service.

In both experiments, the test cases were implemented

in less than 100 extra lines of code based on the QTest

template. The tests consist of device initialization and I/O

manipulation. The device initialization stage is used to locate

and parse the memory address of the virtual device data

structure in the running QEMU memory, which is part

of the QTest template. During the I/O manipulation stage,

based on the knowledge we get from the initialization stage,

the value of device registers of the virtual hardware are

marked as symbolic and the test case starts to generate IRQs,

with which the symbolic execution engine starts to explore

different execution paths of the device.

For CVE-2015-7503, once the execution of QEMU is

crashed because of the heap overflow, a sequence of input

that will trigger the vulnerability will be generated by the

framework automatically. We verified the result by manually

fed the generated test input into the virtual devices and

observed the crash at the vulnerable location. For CVE-

2015-5279, an assertion failure will be triggered once the

execution enters the infinite loop and the corresponding test

input will be generated. The test input is also verified by

manual effort.

With the experiment results, we believe that the proposed

virtual device vulnerability detection technique is able to

detect different types virtual machine vulnerabilities intro-

duced by device implementation flaws. However, in order

to test a virtual hardware with the framework, it requires

the developer to have a certain level of understanding of the

specification of the virtual device to be tested as well as

the emulation implementation. Diminishing the prerequisite

knowledge of the real hardware logic while testing the

virtual device for vulnerabilities will be one of the fureture

works.

VI. DISCUSSION

As more researches are focusing on security in cloud com-

puting, there are a considerable number of works exists that

emphasizing the importance of security of cloud computing,

In the work of [13],Perez-Botero et al. did a thorough

survey in great details of possible attacks in hardware vir-

tualization and proposed some countermeasures to mitigate

the influence when there is an attack. Pk, Gbor etal. studied

CVEs related to KVM and Xen vulnerabilities and mapped

them into different categories based on trigger source, attack

vector and target [14]. There has also been work on classi-

fication of threats based on the different service delivery

models of cloud computing like [15]. Different from all

these works, our work also focuses on the detection of

virtualization vulnerabilities and we propose a framework

to find flaws in the implementation of virtual hardware that

may lead to vulnerabilities.

Although there may appear to have some overlapping

between the three categories we defined, for example, CVE-

2012-5634 shows that a flaw in the logic of virtual hardware

can lead to virtual device state vulnerability, that’s OK

because it won’t impact the detection of the vulnerability.

In fact, flaws of this kind are a lot easier to catch because

the vulnerable characteristics are exposed from different

perspective.

This work is an on going research, as of now, we are able

to test virtual hardware implementation and check for device

state vulnerabilities, future work on the project includes the

conformity inspection of the virtual hardware and resource

availability vulnerability detection based on the framework.

VII. CONCLUSION AND FUTURE WORK

In this work, we conducted analyses of the known vulner-

abilities disclosed in recent years in KVM and Xen, studied

their characteristics as well as the differences between

vulnerabilities in virtualization and traditional software vul-

nerabilities. Our study showed that some of the unique

features of cloud computing and virtualization makes many

of the vulnerabilities hard to address using existing software

verification and validation techniques.

Based on our findings, we presented three categories of

vulnerabilities that are unique to virtualization, identified the

challenges and proposed ideas to detect these vulnerabilities,

designed a framework to implement these ideas to catch
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different kinds of flaws that are buried deep within the imple-

mentation of the virtualization by combining QEMU func-

tion test framework and KLEE LLVM Execution Engine.

We are thus able to test virtual hardware implementation

and check for device state vulnerabilities. Current ongoing

work includes conformity inspection of the virtual hardware

and resource availability vulnerability detection based on the

framework.
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